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a b s t r a c t

Aim: To assess the dynamics of the autonomic nervous system (ANS) by means of heart rate

variability (HRV) during and after acute exposure to normobaric hypoxia, representing a

single session of an intermittent hypoxic training protocol.

Material and methods: Twenty four healthy males aged 28.0 � 7.2 (mean � SD) breathed

hypoxic air (FIO2 = 12.3 � 1.5%) for one hour delivered via hypoxicator (AltiPro 8850 Sum-

mit+, Altitude Tech, Canada). Pulse oximetry and HRV were measured before, during and

after the hypoxic exposure.

Results: At the end of the hypoxic session all of the tested subjects had higher low frequency

(lnLF) (6.9 � 1.1 ms vs.2
 7.5 � 1.1 ms ;2  p = 0.042), LF/HF (1.5 � 0.8 vs. 3.3 � 2.8; p = 0.007) and

standard deviation 2 of the Poincaré plot (SD2) (92.8 � 140.0 ms vs. 120.2 � 54.2 ms; p = 0.005)

as well as increase in the Total power (7.7 � 1.1 ms vs.2
 8.1 � 1.2 ms ;2  p = 0.032) and the

Standard deviation of normal-to-normal interbeat intervals (SDNN) (57.3 � 31.0 ms vs. 72.3

� 41.1 ms; p = 0.024) but lower Sample entropy (SampEn) (1.6 � 0.2 vs. 1.4 � 0.2; p = 0.010).

Immediately after the hypoxic exposure LF/HF lowered (3.3 � 2.8 vs. 2.2 � 1.8; p = 0.001) but

lnHF significantly increased (6.6 � 1.4 ms vs.2
 7.1 � 1.3 ms ;2  p = 0.020).
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Conclusion: Acute normobaric hypoxia as a part of a single session of an intermittent hypoxic

training protocol leads to changes in the activity of the ANS. The sympathetic tone prevails

during hypoxic exposure and parasympathetic tone increases immediately after the hypoxic

factor is withdrawn.

# 2015 The Czech Society of Cardiology. Published by Elsevier Sp. z o.o. All rights

reserved.
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Introduction

Intermittent hypoxic training (IHT) has become a very popular
method nowadays, enhancing exercise performance, working
ability or as a pre-acclimatization alpine technique [1]. It refers
to the discontinuous use of normobaric or hypobaric hypoxia,
in an attempt to reproduce some of the key features of altitude
acclimatization [2]. Prolonged hypoxic exposure for one to
several hours a day as a part of the intermittent hypoxic
training leads to a number of adaptations in the physiological
systems that transport and utilize oxygen [3]. Most of the
initial adaptations are related to alterations in the activity of
the autonomic nervous system (ANS), such as acceleration of
heart rate (HR) almost immediately after hypoxic stimulation
[4,5]. Heart rate variability (HRV) is the variation in the beat-to
beat intervals and is commonly used to evaluate the
autonomic modulation of the heart, especially sympathetic/
parasympathetic interaction.

HRV has been used in the assessment of initial adaptations
to hypoxic exposure at high altitude [6–9]. Acute exposure to
high altitude has been shown to lead to a decrease in Total
power (TP) and standard deviation of normal-to-normal inter-
beat intervals (SDNN) that indicates a reduction in the overall
HRV associated with an increase in LF/HF ratio, suggesting
sympathetic predominance [10–13]. However, in most of the
studies in humans, the effect of hypobaric, high altitude
hypoxia has been evaluated which is not the case with IHT
which is accomplished by means of normobaric hypoxia.
Additionally, at high altitude the influence of various ambient
factors such as temperature, humidity, sensory stimulation and
radiation should be taken into account [14]. Furthermore, there
are no studies regarding the ANS immediately after the hypoxic
exposure. This article presents our pilot study in this field.

Aim

To assess the dynamics of ANS by means of heart rate
variability during and after acute exposure to normobaric
hypoxia, representing a single session of intermittent hypoxic
training protocol.

Material and methods

Twenty four healthy non-smoker males aged 28.0 � 7.2 (mean
� SD) were included in the study. The subjects received all the
relevant information about the study, regarding aim, protocol,
included tests. A signed informed consent was received from
all the subjects prior to inclusion in the study and a
questionnaire about their physical status was filled in. During
the experiment and the preceding day, the participants did not
take any medications, drink coffee or alcohol. A physical
examination, including an electrocardiogram (ECG) reviewed
by a cardiologist to exclude cardiovascular abnormalities or
any rhythm or conductive disorders was carried out. No side
effects or complaints were reported during the protocol.

The subjects were situated in supine position in a
comfortable bed, placed in a quiet, well aerated room with
constant light and ambient temperature and absence of any
distracting factors. They were instructed to keep calm without
excessive voluntary movement or speaking.

During the first 10 min of the visit the participants breathed
ambient air, i.e. at altitude of 130 m (Plovdiv, Bulgaria).
Subsequently, air with an oxygen concentration of 12.3
� 1.5% corresponding to altitude of 4200 m was administered
for one hour via full-facemask, using a hypoxicator (AltiPro
8850 Summit+, Altitude Tech, Canada). This protocol did not
include any change in the barometric pressure (normobaric
hypoxia). After the end of the hypoxic session the mask was
removed and the subject breathed ambient air for 10 min.

Four-channel ECG (H3+, Mortara Instruments, Milwaukee,
USA), pulse oximetry (CMS50F, Contec Medical Systems,
Qinhuangdao, China) were recorded during the whole proto-
col. Blood pressure was manually measured on every 10 min
(Boso, Bosch and Sohn, Germany).

ECG recordings were reviewed, R–R intervals were extracted
automatically by H-Scribe 5 software (Mortara Instruments,
Milwaukee, USA). Five-minute samples were selected from the
end of the pre-hypoxic period; the beginning of hypoxia the
end of hypoxia and immediately after the hypoxic exposure for
the subsequent analysis. After removing trends, data were
analyzed using Kubios HRV software [15] by which both time
and frequency domain parameters were calculated. Prior to
the spectral estimation by Fast Fourier Transform, beat-to-
beat RR time series were transformed to evenly sampled time
series using a cubic spline interpolation.

The following parameters were derived from the RR data:
Total Power (TP) and SDNN as measures of overall autonomic
regulation; absolute and normalized (nu) powers of high
frequency (HF; 0.15–0.40 Hz) and low frequency (LF; 0.04–
0.15 Hz) spectral components, respectively reflecting para-
sympathetic nervous system (PNS) activity and combined
sympathetic (SNS) and PNS activities. The ratio LF/HF was also
calculated as an index of sympatho-vagal balance. Root mean
square of successive RR interval difference (RMSSD) is a time
domain parameter associated with the parasympathetic
activity [16]. In addition to linear methods described above,
three commonly used nonlinear parameters were computed.



Fig. 1 – Dynamics of the Mean Heart Rate and oxygen
saturation before, during and after the hypoxic exposure.
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These include standard deviations SD1 and SD2 of the Poincaré
plot – SD1 related to fast beat-to-beat variability in data and
SD2 describing longer-term variability of R–R [17]. Sample
Entropy (SampEn) was also computed and provides a simple
index for the overall complexity and predictability of HRV time
series [18].

The statistical analysis was performed using repeated
measures one-way ANOVA (SPSS v.17.0). Normality of distri-
bution was checked by Kolmogorov–Smirnov test. Skewness of
distribution in some parameters (absolute spectral powers)
was normalized with natural logarithmic transformation.

The study was presented and approved at a meeting of the
Institutional Ethics Committee of Medical University of
Plovdiv.

Results

In response to the hypoxic exposure the oxygen saturation
(SpO2) decreased abruptly from 97.0 � 1.3% to 91.1 � 4.4%;
Table 1 – Frequency domain and non-linear parameters at bas
and after its cessation (Post-hypoxia).

(1)
Pre-hypoxia
Mean � SD

(2)
Begin of hypoxia

Mean � SD

(3)
End of hypo

Mean � SD

SDNN (ms) 57.3 � 31.0 57.3 � 24.6 72.3 � 41.2
RMSSD (ms) 55.9 � 32.9 49.5 � 26.3 61.9 � 40.2
lnTotal power (ms2) 7.7 � 1.1 7.8 � 0.9 8.1 � 1.2 

lnLF (ms2) 6.9 � 1.1 7.1 � 0.9 7.5 � 1.1 

lnHF (ms2) 6.6 � 1.3 6.4 � 1.1 6.6 � 1.4 

LF/HF 1.5 � 0.8 3.0 � 2.3 3.3 � 2.8 

SD1 (ms) 41.4 � 23.3 37.1 � 45.6 45.6 � 28.4
SD2 (ms) 92.8 � 40.0 89.5 � 35.2 120.2 � 54.2
SampEn 1.6 � 0.2 1.5 � 0.3 1.4 � 0.2 
p < 0.001 and continued to fall during the course of the hypoxic
exposure reaching at the end a value of 88.7 � 6.0% ( p = 0.051).
In the post-hypoxic period a significant increase in SpO2 to
95.8 � 6.2%occurred (Fig. 1).

Mean heart rate (MeanHR, Fig. 1) increased significantly in
the beginning of the hypoxic exposure from 65.9 � 8.7 b/min to
68.9 � 10.0 b/min ( p = 0.033), but returned to values not
different from baseline at the end of the hypoxia (65.8
� 11.0 b/min). A further decrease in MeanHR to 62.5 � 8.8
( p = 0.004) was observed during recovery. There was no
significant change in the blood pressure – 117.4 � 9.4/75.5
� 7.1 mmHg pre-hypoxic vs. 116.8 � 8.3/75.7 � 8.0 mmHg dur-
ing the hypoxia.

The results from the HRV analysis are presented in Table 1.
Total power and SDNN changes during the different periods
are shown in Fig. 2. Total power and SDNN steadily increased
under hypoxic conditions, reaching significantly higher values
at the end of hypoxia compared to the pre-hypoxic period.
RMSSD did not change during hypoxia but significantly
increased in the post-hypoxic period.

When dividing the total spectral power into low and high
frequency components it was observed that LF power (lnLF)
increased with hypoxia exposure and reached significantly
higher values than in pre-hypoxia at the end of the hypoxic
protocol min. No further change was found in the post
hypoxic period. The HF power (lnHF) on the other hand had
showed no modification during the hypoxia, but increased
significantly in the post hypoxic period. When looking at
spectral component powers in normalized units, LF/HF ratio
changed accordingly, doubling during hypoxia exposure, and
decreasing toward initial values after removal of the hypoxic
stimulus.

Peak frequency for HF at the four different stages of the
study was as follows: before (0.21 � 0.06), at the beginning
(0.20 � 0.05), at the end (0.21 � 0.07) and after hypoxia (0.21
� 0.05) and did not show significant difference ( p = 1.000).

The results from non-linear analysis showed significant
increase in SD2 and decrease in SampEn at the end of the
hypoxic period.

A moderate positive correlation was found between the
lnTP and the SpO2 at the end of the hypoxic period
(rho = 0.597, p = 0.03) and between lnTP at the beginning
and SpO2 at the end of the hypoxic exposure (rho = 0.497,
p = 0.019).
eline (Pre-hypoxia), beginning of hypoxia, end of hypoxia

xia
(4)

Post-hypoxia
Mean � SD

1vs2
p value

1vs3
p value

2vs3
p value

3vs4
p value

 84.7 � 40.0 p = 1.000 p = 0.024 p = 0.052 p = 0.222
 71.4 � 46.1 p = 0.588 p = 1.000 p = 0.137 p = 0.036

8.5 � 1.0 p = 1.000 p = 0.032 p = 0.255 p = 0.377
7.6 � 0.9 p = 1.000 p = 0.042 p = 0.358 p = 1.000
7.1 � 1.3 p = 0.778 p = 1.000 p = 1.000 p = 0.020
2.2 � 1.8 p = 0.035 p = 0.007 p = 1.000 p = 0.001

 51.4 � 33.0 p = 0.520 p = 1.000 p = 0.174 p = 0.097
 139.6 � 54.2 p = 1.000 p = 0.005 p = 0.006 p = 0.099

1.3 � 0.2 p = 1.000 p = 0.010 p = 0.177 p = 1.000



Fig. 2 – Dynamics of the Total power and SDNN before, during and after the hypoxic exposure.
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Discussion

The results of our study verify the sympathetic predominance
during acute exposure to hypoxia expressed in rise in HR, lnLF
and higher LF/HF, which are concordant with most of the
studies on the topic [2,7,19]. Sympathetic activation is a result
of the decreased oxygen saturation and activation of the
peripheral chemoreceptors, which leads to increase in heart
rate and peripheral vasoconstriction [6,14,20].

Vigo et al. found a different pattern of diminished HRV
parameters in low and high frequencies during hypoxia,
without any significant changes in LF/HF. However, their
protocol is associated with severe hypoxic conditions (extreme
altitude of 8230 m simulated in hypobaric chamber) which are
much more stressful for the organism [21].

We found a significant increase in the TP during hypoxia
(predominantly due to increased LF) and SDNN, which differs
with the findings of other studies [22–25]. For example, Kanai
et al. have measured HRV among untrained office workers and
found that the power of HF and LF decreases with increasing
altitude but LF/HF rises [7].

However, the hypoxic protocols of the mentioned studies
differ significantly from ours in using hypobaric hypoxia and
not measuring HRV immediately after hypoxic exposure.
Zuzewicz et al. demonstrated that the low barometric pressure
is responsible for the decrease in HRV spectral power
parameters by comparing the effects of hypobaric and
normobaric hypoxic conditions, corresponding to 4500 m
altitude [26]. It has been hypothesized that the arterial
baroreflex can be a major – although not exclusive –

determinant of the HRV and particularly of LF under such
circumstances. Moreover, baroreceptor control of the heart is
still active at high altitude, counteracting the increase in blood
pressure and peripheral vasoconstriction induced by arterial
chemoreceptors [6,14,20]. Thus, baroreflex activity could be
another possible explanation of the increasing SDNN and Total
power during hypoxic conditions since there was no signifi-
cant change in the arterial pressure.
On the other hand these differences may be attributed to
imparity between the study conditions. While our protocol is
laboratory based, the studies finding low SDNN and Total
power [22–25] are field research. At high altitude other factors,
such as temperature, humidity, sensory stimulation and
radiation may influence ANS status and should not be
underestimated [14]. Our hypothesis is that the observed
changes in HRV parameters in our study reflect solely the
hypoxic influence. Furthermore, the definition of ‘‘acute
hypoxia’’ is quite volatile among different studies, especially
regarding its duration, which may also account for the
difference in the results. For example, the low responsiveness
of the ANS at high altitude is believed to be a protective
adaptation mechanism against excessive and continuous
sympathetic stimulation in a long-term stay at high altitude
[24]. This is a likely explanation of the lack of changes in long-
term HRV variations (lnLF and SD2) in the beginning of
hypoxia, but significant increase after one hour of hypoxic
exposure, present in our study.

Buchheit et al. have measured the effect of acute hypoxia
on HRV in laboratory conditions in seated position. They found
a pattern of decreased vagal activity (decreased RMSSD and
HF), and sympathetic predominance (LF/HF), but no change in
LF, SDNN and TP [27]. The difference from our results could be
attributed to the posture, since seated position has been
associated with decreased HRV compared to supine position
[28].

TP was also increased during the first day of high altitude
exposure in the study of Lipsitz et al., who had suggested that
the increase in LF power is not simply a result of sympathetic
modulation of heart rate, but relates to distinctive cardiopul-
monary oscillations associated with alternating periods of
hyperpnoea and apnoea [29]. However, our protocol does not
include any sleep period and such breathing abnormalities are
not likely to occur. Another limitation of our study was that
we did not measure breathing frequency and other ventilatory
parameters of the subjects during the protocol. However,
Thayer et al. have suggested that the central frequency of HF
component may serve as an index of respiratory frequency
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when more direct measures are not available [30]. The peak
frequency at the HF band was on average between 0.20 and
0.21 Hz for all the analyzed time periods, which indicates
that there were no significant changes in the respiratory
frequency during the protocol that could potentially affect the
HRV results.

We observed significant augmentation in RMSSD imme-
diately after the withdrawal of the hypoxic stimulus and a
decrease in LF/HF. Absolute power of LF did not change in
the post-hypoxic period in contrast to the significantly
increased HF. These results suggest an increase in the PSNS
activity following the transition from hypoxic to normoxic
conditions which also leads to a significant decrease in the
MeanHR.

There are very few studies regarding the effect of acute
hypoxia on non-linear characteristics of HRV time series and
the results are controversial. While Zhang et al. found
increased Sample entropy (indicating increased complexity)
of HRV in acute hypoxia, Yuanyuan et al. did not observe
any change in this parameter [31,32]. We established a
pattern of progressively decreasing sample entropy during
the hypoxic exposure. These controversies clearly demand
further studies in the field to elucidate the effect of
hypoxia on non-linear HRV dynamics and clarify their
interpretation.

We also found a positive correlation between the oxygen
saturation and the total power at the end of hypoxic exposure.
It is shown that increased lnTP values are associated with
higher SpO2. Thus, it could be suggested that the intensive ANS
activation is a prerequisite for adequate adaptation to
exogenous hypoxia. What is more, the positive correlation
between lnTP at the beginning of hypoxia and SpO2 at the end
of the one-hour exposure may indicate that just like the good
hypoxic ventilatory response [19,24], intense early ANS
activation may contribute to higher oxygen saturation during
the later stages of hypoxic exposure. However, a correlation is
not an indicator of positive relationship and further investiga-
tions are needed to confirm these data.

We think that our data may have practical significance. As
AMS is a result of a blunted response of the ANS to hypoxia [13]
HRV could be used as a predictor for AMS prior to the
manifestation of clinical signs [19]. Therefore, our protocol
may be potentially used as a predictive laboratory test for AMS,
adaptations to hypoxia or the effect of intermittent hypoxic
training, but specific investigations focusing on these particu-
lar outcomes are needed.

Conclusion

Acute normobaric hypoxia as a part of a single session of an
intermittent hypoxic training protocol leads to changes in the
activity of the ANS. The SNS tone prevails during hypoxic
exposure and PNS tone increases immediately after the
hypoxic factor is withdrawn.

The HRV method is reliable and is able to assess the
changes in the ANS caused by IHT.

This is our pilot study and further investigation is needed to
assess the changes of the autonomic nervous system activity
over time with continuous intermittent hypoxic training.
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